Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Nat Commun ; 15(1): 2493, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509098

RESUMO

The histamine H4 receptor (H4R) plays key role in immune cell function and is a highly valued target for treating allergic and inflammatory diseases. However, structural information of H4R remains elusive. Here, we report four cryo-EM structures of H4R/Gi complexes, with either histamine or synthetic agonists clobenpropit, VUF6884 and clozapine bound. Combined with mutagenesis, ligand binding and functional assays, the structural data reveal a distinct ligand binding mode where D943.32 and a π-π network determine the orientation of the positively charged group of ligands, while E1825.46, located at the opposite end of the ligand binding pocket, plays a key role in regulating receptor activity. The structural insight into H4R ligand binding allows us to identify mutants at E1825.46 for which the agonist clobenpropit acts as an inverse agonist and to correctly predict inverse agonism of a closely related analog with nanomolar potency. Together with the findings regarding receptor activation and Gi engagement, we establish a framework for understanding H4R signaling and provide a rational basis for designing novel antihistamines targeting H4R.


Assuntos
Agonismo Inverso de Drogas , Histamina , Imidazóis , Tioureia/análogos & derivados , Histamina/metabolismo , Receptores Histamínicos H4 , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Receptores Histamínicos/metabolismo , Antagonistas dos Receptores Histamínicos/farmacologia
2.
J Med Chem ; 67(4): 2849-2863, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330051

RESUMO

Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.


Assuntos
Antiprotozoários , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Antiprotozoários/uso terapêutico , Desenvolvimento de Medicamentos
3.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38346795

RESUMO

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transdução de Sinais , Ligantes , Ligação Competitiva
4.
Eur J Pharmacol ; 968: 176450, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387718

RESUMO

The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.


Assuntos
Histamina , Receptores Histamínicos H3 , Humanos , Histamina/farmacologia , Receptores Histamínicos H3/metabolismo , Agonismo Inverso de Drogas , Receptores Histamínicos , Isoformas de Proteínas , Agonistas dos Receptores Histamínicos/farmacologia
5.
ACS Med Chem Lett ; 15(1): 143-148, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229752

RESUMO

The atypical chemokine receptor 3 (ACKR3) is a receptor that induces cancer progression and metastasis in multiple cell types. Therefore, new chemical tools are required to study the role of ACKR3 in cancer and other diseases. In this study, fluorescent probes, based on a series of small molecule ACKR3 agonists, were synthesized. Three fluorescent probes, which showed specific binding to ACKR3 through a luminescence-based NanoBRET binding assay (pKd ranging from 6.8 to 7.8) are disclosed. Due to their high affinity at the ACKR3, we have shown their application in both competition binding experiments and confocal microscopy studies showing the cellular distribution of this receptor.

6.
Mol Pharmacol ; 105(2): 84-96, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37977823

RESUMO

The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFÏ°B, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.


Assuntos
Histamina , Receptores Histamínicos H1 , Animais , Humanos , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Pirilamina/farmacologia , Pirilamina/metabolismo , Peixe-Zebra , Transdução de Sinais
7.
Biochem Pharmacol ; : 115988, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38159685

RESUMO

The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. ß-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.

8.
J Chem Inf Model ; 63(21): 6696-6705, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831965

RESUMO

Photoswitchable (PSW) molecules offer an attractive opportunity for the optical control of biological processes. However, the successful design of such compounds remains a challenging multioptimization endeavor, resulting in several biological target classes still relatively poorly explored by photoswitchable ligands, as is the case for G protein-coupled receptors (GPCRs). Here, we present the PSW-Designer, a fully open-source computational platform, implemented in the KNIME Analytics Platform, to design and virtually screen novel photoswitchable ligands for photopharmacological applications based on privileged scaffolds. We demonstrate the applicability of the PSW-Designer to GPCRs and assess its predictive capabilities via two retrospective case studies. Furthermore, by leveraging bioactivity information on known ligands, typical and atypical strategies for photoswitchable group incorporation, and the increasingly structural information available for biological targets, the PSW-Design will facilitate the design of novel photoswitchable molecules with improved photopharmacological properties and increased binding affinity shifts upon illumination for GPCRs and many other protein targets.


Assuntos
Receptores Acoplados a Proteínas G , Estudos Retrospectivos , Receptores Acoplados a Proteínas G/química , Ligantes
9.
PLoS Comput Biol ; 19(9): e1011301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669273

RESUMO

Many therapies in clinical trials are based on single drug-single target relationships. To further extend this concept to multi-target approaches using multi-targeted drugs, we developed a machine learning pipeline to unravel the target landscape of kinase inhibitors. This pipeline, which we call 3D-KINEssence, uses a new type of protein fingerprints (3D FP) based on the structure of kinases generated through a 3D convolutional neural network (3D-CNN). These 3D-CNN kinase fingerprints were matched to molecular Morgan fingerprints to predict the targets of each respective kinase inhibitor based on available bioactivity data. The performance of the pipeline was evaluated on two test sets: a sparse drug-target set where each drug is matched in most cases to a single target and also on a densely-covered drug-target set where each drug is matched to most if not all targets. This latter set is more challenging to train, given its non-exclusive character. Our model's root-mean-square error (RMSE) based on the two datasets was 0.68 and 0.8, respectively. These results indicate that 3D FP can predict the target landscape of kinase inhibitors at around 0.8 log units of bioactivity. Our strategy can be utilized in proteochemometric or chemogenomic workflows by consolidating the target landscape of kinase inhibitors.


Assuntos
Sistemas de Liberação de Medicamentos , Aprendizado de Máquina , Redes Neurais de Computação , Inibidores de Proteínas Quinases/farmacologia , Fluxo de Trabalho
10.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446602

RESUMO

Malaria continues to pose a significant health threat, causing thousands of deaths each year. The limited availability of vaccines and medications, combined with the emergence of drug resistance, further complicates the fight against this disease. In this study, we aimed to enhance the antimalarial potency of the previously reported hit compound BIPPO (pIC50 5.9). Through systematic modification of pyrazolopyrimidinone analogs, we discovered the promising analog 30 (NPD-3547), which exhibited approximately one log unit higher in vitro potency (pIC50 6.8) against Plasmodium falciparum. Furthermore, we identified several other BIPPO analogs (23, 28, 29 and 47a) with potent antimalarial activity (pIC50 > 6.0) and favorable metabolic stability in mouse liver microsomes. These compounds can serve as new tools for further optimization towards the development of potential candidates for antimalarial studies.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Camundongos , Animais , Antimaláricos/química , Malária/tratamento farmacológico , Plasmodium falciparum , Microssomos Hepáticos , Resistência a Medicamentos , Antagonistas do Ácido Fólico/uso terapêutico
11.
J Med Chem ; 66(15): 10252-10264, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37471520

RESUMO

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei, is one of the neglected tropical diseases with a continuing need for new medication. We here describe the discovery of 5-phenylpyrazolopyrimidinone analogs as a novel series of phenotypic antitrypanosomal agents. The most potent compound, 30 (NPD-2975), has an in vitro IC50 of 70 nM against T. b. brucei with no apparent toxicity against human MRC-5 lung fibroblasts. Showing good physicochemical properties, low toxicity potential, acceptable metabolic stability, and other pharmacokinetic features, 30 was further evaluated in an acute mouse model of T. b. brucei infection. After oral dosing at 50 mg/kg twice per day for five consecutive days, all infected mice were cured. Given its good drug-like properties and high in vivo antitrypanosomal potential, the 5-phenylpyrazolopyrimidinone analog 30 represents a promising lead for future drug development to treat HAT.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Camundongos , Humanos , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Descoberta de Drogas , Desenvolvimento de Medicamentos
12.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143309

RESUMO

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Assuntos
Edema Encefálico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutação/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Encéfalo/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047792

RESUMO

Schistosomiasis is a neglected tropical disease with high morbidity. Recently, the Schistosoma mansoni phosphodiesterase SmPDE4A was suggested as a putative new drug target. To support SmPDE4A targeted drug discovery, we cloned, isolated, and biochemically characterized the full-length and catalytic domains of SmPDE4A. The enzymatically active catalytic domain was crystallized in the apo-form (PDB code: 6FG5) and in the cAMP- and AMP-bound states (PDB code: 6EZU). The SmPDE4A catalytic domain resembles human PDE4 more than parasite PDEs because it lacks the parasite PDE-specific P-pocket. Purified SmPDE4A proteins (full-length and catalytic domain) were used to profile an in-house library of PDE inhibitors (PDE4NPD toolbox). This screening identified tetrahydrophthalazinones and benzamides as potential hits. The PDE inhibitor NPD-0001 was the most active tetrahydrophthalazinone, whereas the approved human PDE4 inhibitors roflumilast and piclamilast were the most potent benzamides. As a follow-up, 83 benzamide analogs were prepared, but the inhibitory potency of the initial hits was not improved. Finally, NPD-0001 and roflumilast were evaluated in an in vitro anti-S. mansoni assay. Unfortunately, both SmPDE4A inhibitors were not effective in worm killing and only weakly affected the egg-laying at high micromolar concentrations. Consequently, the results with these SmPDE4A inhibitors strongly suggest that SmPDE4A is not a suitable target for anti-schistosomiasis therapy.


Assuntos
Inibidores da Fosfodiesterase 4 , Esquistossomose , Animais , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Schistosoma mansoni , Benzamidas/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Esquistossomose/tratamento farmacológico , Nucleotídeos Cíclicos
14.
Neuron ; 111(10): 1564-1576.e6, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36924772

RESUMO

Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.


Assuntos
Liberação de Histamina , Histamina , Animais , Camundongos , Encéfalo , Hipotálamo , Receptores Acoplados a Proteínas G
15.
ACS Chem Neurosci ; 14(4): 645-656, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702158

RESUMO

The human histamine H3 receptor (hH3R) is predominantly expressed in the CNS, where it regulates the synthesis and release of histamine and other neurotransmitters. Due to its neuromodulatory role, the hH3R has been associated with various CNS disorders, including Alzheimer's and Parkinson's disease. Markedly, the hH3R gene undergoes extensive splicing, resulting in 20 isoforms, of which 7TM isoforms exhibit variations in the intracellular loop 3 (IL3) and/or C-terminal tail. Particularly, hH3R isoforms that display variations in IL3 (e.g., hH3R-365) are shown to differentially signal via Gαi-dependent pathways upon binding of biased agonists (e.g., immepip, proxifan, imetit). Nevertheless, the mechanisms underlying biased agonism at hH3R isoforms remain unknown. Using a structure-function relationship study with a broad range of H3R agonists, we thereby explored determinants underlying isoform bias at hH3R isoforms that exhibit variations in IL3 (i.e., hH3R-445, -415, -365, and -329) in a Gαi-dependent pathway (cAMP inhibition). Hence, we systematically characterized hH3R isoforms on isoform bias by comparing various ligand properties (i.e., structural and molecular) to the degree of isoform bias. Importantly, our study provides novel insights into the structural and molecular basis of receptor isoform bias, highlighting the importance to study GPCRs with multiple isoforms to better tailor drugs.


Assuntos
Histamina , Receptores Histamínicos H3 , Humanos , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos , Isoformas de Proteínas/metabolismo , Ligantes , Agonistas dos Receptores Histamínicos/farmacologia
16.
Arch Pharm (Weinheim) ; 356(1): e2200451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36310109

RESUMO

Histamine H3 receptor (H3 R) agonists without an imidazole moiety remain very scarce. Of these, ZEL-H16 (1) has been reported previously as a high-affinity non-imidazole H3 R (partial) agonist. Our structure-activity relationship analysis using derivatives of 1 identified both basic moieties as key interaction motifs and the distance of these from the central core as a determinant for H3 R affinity. However, in spite of the reported H3 R (partial) agonism, in our hands, 1 acts as an inverse agonist for Gαi signaling in a CRE-luciferase reporter gene assay and using an H3 R conformational sensor. Inverse agonism was also observed for all of the synthesized derivatives of 1. Docking studies and molecular dynamics simulations suggest ionic interactions/hydrogen bonds to H3 R residues D1143.32 and E2065.46 as essential interaction points.


Assuntos
Histamina , Receptores Histamínicos H3 , Agonismo Inverso de Drogas , Ligantes , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/química , Relação Estrutura-Atividade , Receptores Histamínicos
17.
iScience ; 25(9): 104882, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060054

RESUMO

In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ß1-AR and ß2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t 1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSS cis , large differences in binding affinities were observed for photoswitchable compounds at ß1-AR as well as ß2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ß2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ß2-AR as shown with a conformational ß2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes.

18.
Curr Top Behav Neurosci ; 59: 3-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35851442

RESUMO

The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.


Assuntos
Histamina , Receptores Histamínicos , Biologia , Histamina/farmacologia , Ligantes , Receptores Histamínicos/química
19.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897787

RESUMO

Conformational biosensors to monitor the activation state of G protein-coupled receptors are a useful addition to the molecular pharmacology assay toolbox to characterize ligand efficacy at the level of receptor proteins instead of downstream signaling. We recently reported the initial characterization of a NanoBRET-based conformational histamine H3 receptor (H3R) biosensor that allowed the detection of both (partial) agonism and inverse agonism on living cells in a microplate reader assay format upon stimulation with H3R ligands. In the current study, we have further characterized this H3R biosensor on intact cells by monitoring the effect of consecutive ligand injections in time and evaluating its compatibility with photopharmacological ligands that contain a light-sensitive azobenzene moiety for photo-switching. In addition, we have validated the H3R biosensor in membrane preparations and found that observed potency values better correlated with binding affinity values that were measured in radioligand competition binding assays on membranes. Hence, the H3R conformational biosensor in membranes might be a ready-to-use, high-throughput alternative for radioligand binding assays that in addition can also detect ligand efficacies with comparable values as the intact cell assay.


Assuntos
Técnicas Biossensoriais , Receptores Histamínicos H3 , Membrana Celular/metabolismo , Ligantes , Receptores Histamínicos , Receptores Histamínicos H3/metabolismo
20.
J Med Chem ; 65(12): 8258-8288, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35734860

RESUMO

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.


Assuntos
Histamina , Receptores Histamínicos H1 , Corantes Fluorescentes/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeos , Receptores Histamínicos/metabolismo , Receptores Histamínicos H1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...